Applications of regularized least squares to pattern classification
نویسندگان
چکیده
منابع مشابه
Applications of regularized least squares to pattern classification
We survey a number of recent results concerning the behaviour of algorithms for learning classifiers based on the solution of a regularized least-squares problem. c © 2007 Elsevier B.V. All rights reserved.
متن کاملRegularized Least-Squares Classification
We consider the solution of binary classification problems via Tikhonov regularization in a Reproducing Kernel Hilbert Space using the square loss, and denote the resulting algorithm Regularized Least-Squares Classification (RLSC). We sketch the historical developments that led to this algorithm, and demonstrate empirically that its performance is equivalent to that of the well-known Support Ve...
متن کاملApplications of Regularized Least Squares to Classification Problems
We present a survey of recent results concerning the theoretical and empirical performance of algorithms for learning regularized least-squares classifiers. The behavior of these family of learning algorithms is analyzed in both the statistical and the worst-case (individual sequence) data-generating models. 1 Regularized Least-Squares for Classification In the pattern classification problem, s...
متن کاملDiscriminatively regularized least-squares classification
Over the past decades, regularization theory is widely applied in various areas of machine learning to derive a large family of novel algorithms. Traditionally, regularization focuses on smoothing only, and does not fully utilize the underlying discriminative knowledge which is vital for classification. In this paper, we propose a novel regularization algorithm in the least-squares sense, calle...
متن کاملRegularized Least Squares Piecewise Multi-classification Machine
This paper presents a Tikhonov regularization based piecewise classification model for multi-category discrimination of sets or objects. The proposed model includes a linear classification and nonlinear kernel classification model formulation. Advantages of the regularized multi-classification formulations include its ability to express a multi-class problem as a single and unconstrained optimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2007
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2007.03.053